A Case of Rupture of the Uterus

On October 18th, 1933 at 7 a.m. Parvathy a 10th para was admitted into the Government Hospital for Women and Children, Egmore, Madras, having been brought from a village about 22 miles away. She was said to have been in labour from 7 p.m. on the 17th, rupture of the membranes having occurred at 9 p.m. on the 17th, 2 hours later.

On admission, the patient's general condition was very poor. The pulse hardly perceptible, respiration hurried and temperature 101°8. The patient was in a state of extreme shock—abdomen tender to touch and foetal parts were felt to be free in the peritoneal cavity. The uterus could be felt hard and contracted and pushed over to the right side of the abdomen. The child had apparently escaped out of it. The vulva was greatly oedematous and the vagina much excoriated, probably due to the attempt of the barber-midwife to deliver the patient. The os fully dilatated, membranes absent, foetal head inaudible and the heart not enzased.

It was obvious that the patient had only a very small chance of recovery. There were 2 alternatives:

1. To leave her as she was and let her die, it being remembered that no vaginal-uterine manipulations would help as the whole body of the child had left the uterus, and was free in the peritoneal cavity.

2. To do a Caesarian section and supra vaginal Hysterectomy, the latter being necessary because of the huge tear in the uterus and also because the risk of sepsis would be very great, as the sloughing would most certainly occur, so the second course was adopted as this would give the patient just a chance of recovery.

Operations 8-30 a.m. On opening the abdomen, the placenta was seen at once, so this and the foetus was removed. On examining the uterus, it was found to be torn—the tear occupying the whole of the anterior side of the left uterine segment. The uterus was removed and the abdomen closed. The treatment from the time of admission was as follows:

19-10-1933. 7 a.m. On admission

<table>
<thead>
<tr>
<th>Glucose and Brandy</th>
<th>311c Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyp. Inj. Digalen</td>
<td>m XV</td>
</tr>
<tr>
<td>Sub-mammary saline</td>
<td>O, injected—patient kept warm.</td>
</tr>
</tbody>
</table>

7-35 a.m. Hyp. Inj. Omnopon 1 cc
7-50 a.m. Stomach washed out, because the patient was vomiting freely.

8-30 a.m. Sub-mammary saline throughout the operation.

12-30 a.m. Intravenous saline O10 Gum arabic solution
Hyp. Inj. atropine gr. 1/100
The patient expired at 1 P.M.
The child was a still born male, weighing 7½ lbs.
During 1937, there were 7 cases of rupture of the uterus admitted into the hospital and of these 5 died and 2 recovered. In none of the cases was a Hysterectomy performed, the treatment adopted being the removal of the child by forceps or by version-plugging of the uterus and the usual treatment for collapse.

D. CHADWICK, S.R.N.

THE STATE EXAMINATIONS: PRELIMINARY

Answers Arranged by the Sister Tutor Section, College of Nursing

ANATOMY

Give a short anatomical description of the shoulder joint.

The shoulder joint is a ball and socket joint formed by the humerus and scapula. The outer angle of the scapula carries a shallow depression, the glenoid head of the humerus. The glenoid cavity is covered with articular cartilage and is surrounded with a rim of fibro-cartilage; this rim serves to deepen and enlarge the socket. Two processes of the scapula project above the joint; they help to keep the head of the humerus in its shallow socket and provide attachment for muscles. The larger process is known as the acromion process, the smaller as the coracoid process. The head of the humerus is rounded, is covered with articular cartilage. It is much larger than the glenoid cavity, thus giving great freedom of movement to the joint, but making dislocation easy. The bones are held together by a capsule and ligaments lined with synovial membrane. This membrane secretes synovial fluid into the joint cavity for lubrication. The capsule is loose, permitting free movement, but is strengthened by powerful muscles and their tendons, the long bicipital tendon passing through the capsule and acting as an internal ligament. These muscles are grouped round the joint to move and support it: biceps, triceps, pectoralis major and deltoid. The joint permits of movement in all directions—flexion, extension, abduction, adduction, circumduction and rotation.

The other questions were:—Describe the course of the chief arteries of the limbs. How and where would you control haemorrhage from them by digital pressure?—What is a sphincter muscle? Give examples and describe how they act.

PHYSIOLOGY

What are the functions of (a) leucocytes (white blood corpuscles), (b) the pericardium, (c) the diaphragm?

(a) are of several varieties. The majority, known as polymorphonuclear cells, are able, by their ameboid movement, to pass out through the capillary walls into the tissues and to eat up particles of foreign matter. Their chief